

Neutrinoless double-beta decay search results from CUORE

Jeremy Cushman for the CUORE Collaboration Wright Laboratory, Yale University APS DNP Meeting, 10/26/17

Calibration source deployment

- Sources are outside cryostat during physics data-taking
- Outer bolometers shield inner bolometers
- Sources must be lowered into cryostat for calibration and cooled to 10 mK
- Sources are put on strings and are lowered under their own weight
- A series of tubes in the cryostat guide the strings

Calibrations

• 6 lines from the ²³²Th decay chain are used to calibrate the detector

Calibration Spectrum

- Sets energy scale
- Used to study detector line shape

Line shape

- Line shape modeled from 2615-keV gamma line from calibration
 - Mono-energetic electron-like energy deposition, as $0\nu\beta\beta$ decay would be

- (a) Main photopeak, modeled as the sum of 3 Gaussians
- (b) Step-wise smeared multi-Compton background
- (c) Te X-ray escape following a 2615 keV deposition
- (d) Linear background
- (e) Gaussian line for the coincident absorption of 2615 keV and 583 keV followed by a single 511 keV escape

- Channel-dependent shape of the 2615-keV line is used for the spectrum fit in the $0\nu\beta\beta$ decay region of interest

Calibration resolution

• Resolution of each channel is determined from the fits to the 2615-keV line

Harmonic mean resolution of all detectors at 2615 keV in calibration data:

8.0 keV

Resolution at Q-value

- We perform a fit to various lines in the physics spectrum to:
 - Estimate the resolution at the *Q*-value
 - Assess any possible energy reconstruction bias

Energy resolution in physics data at *Q*-value:

- (8.3 ± 0.4) keV in Dataset 1
- (7.4 ± 0.7) keV in Dataset 2

- Energy bias is consistent with 0
- We conservatively take ±0.5 keV as a systematic uncertainty

Blinded spectrum

- The spectrum is blinded during data analysis by inserting a fake peak at the *Q*-value
- Events are swapped between the region around the *Q*-value and 2615 keV

CUORE physics spectrum (blinded)

Blinded spectrum

- The spectrum is blinded during data analysis by inserting a fake peak at the *Q*-value
- Events are swapped between the region around the *Q*-value and 2615 keV

Decay rate

- Unbinned extended maximum likelihood fit in the region of interest
- Using the line shapes in each channel obtained from calibration data
- Resolution of $0\nu\beta\beta$ peak is determined from visible lines in physics spectrum
- *Q*-value is fixed

Half-life limit

• Integrate the negative log-likelihood in the physical region (decay rate > 0) to obtain a 90% C.L. limit on $0\nu\beta\beta$ decay

CUORE Half-life limit (90% CL): $T_{1/2}^{0\nu} > 1.3 \times 10^{25}$ yr CUORE + CUORE-0 + Cuoricino: $T_{1/2}^{0\nu} > 1.5 \times 10^{25}$ yr

Strongest limit on $0\nu\beta\beta$ decay in ¹³⁰Te to date

Sensitivity

• We evaluate the sensitivity of this search by fitting a large number of pseudoexperiments generated with the null (no-signal) hypothesis

- Median 90%-C.L. limit obtained in these pseudo-experiments (the sensitivity of this search) is 7.0×10^{24} yr
- 2% chance of obtaining a more stringent limit than the one we obtained before accounting for systematic uncertainties

Effective Majorana mass

• We evaluate our result as a limit on the effective Majorana neutrino mass in the context of the model of light Majorana neutrino exchange

• We obtain $m_{\beta\beta} < 140 - 400$ meV, depending on the nuclear matrix elements used

Summary

- We have collected almost 100 kg yr of exposure with CUORE
- CUORE has set a limit on ¹³⁰Te $0\nu\beta\beta$ decay greater than 10^{25} years: arXiv:1710.07988
- The CUORE cryostat, a huge engineering feat, has been operating smoothly and reliably in these first datasets
- With 5 years of live time, the sensitivity of CUORE will improve by over an order of magnitude from its current value
- Thanks to the DOE Office of Science, Nuclear Physics, and Yale University for funding this research
- More physics results are on the way!

DNP Meeting, 10/26/17

Jeremy Cushman, Yale